Exercise 7.3.1

Find the general solutions to the following ODEs. Write the solutions in forms that are entirely real (i.e., that contain no complex quantities).

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0 .
$$

Solution

Because this is a linear homogeneous ODE and all the coefficients on the left side are constant, the solutions for it are of the form $y=e^{r t}$.

$$
y=e^{r t} \quad \rightarrow \quad y^{\prime}=r e^{r t} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r t} \quad \rightarrow \quad y^{\prime \prime \prime}=r^{3} e^{r t}
$$

Substitute these formulas into the ODE.

$$
r^{3} e^{r t}-2\left(r^{2} e^{r t}\right)-r e^{r t}+2\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
r^{3}-2 r^{2}-r+2=0
$$

Solve for r.

$$
\begin{gathered}
(r+1)(r-1)(r-2)=0 \\
r=\{-1,1,2\}
\end{gathered}
$$

Three solutions to the ODE are $y=e^{-t}$ and $y=e^{t}$ and $y=e^{2 t}$. By the principle of superposition, the general solution is a linear combination of these three. Therefore,

$$
y(t)=C_{1} e^{-t}+C_{2} e^{t}+C_{3} e^{2 t}
$$

